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ON THE INFLUENCE OF HEAT TRANSFER AND BLOWING ON THE STRUCTURE OF 
LAf%I.NAR HYPERSONIC FLOW BEHIND A BODY* 

S.V. NANUILOVICH and E.D. THRENT'EV 

The asymptotic solution of the Navier-Stokes equations in the problem of 
hypersonic flow at large distances behind a body of finite sizeis studied. 
The principal term of the expansion for the perturbation of the longitud- 
inal velocity canponent in the region of the trace, decaying exponentially 
in the direction of the outer boundary of the trace, is derived. The 
stream function is assumed constant along the axis of the trace and, 
generally speaking, non-zero. The solution constructed, enables not only 
the effect of the resistance, but also of the heat and mass flux from the 
streamlined body to be taken into account. The second terms of the 
asymptotic expansions of the flow parameters are obtained for the whole 
region of perturbed motion. 

1. Consider a plane parallel (v = 1) or axisymmetric (v = 2) hypersonic (po, = 0) flow of 
an ideal gas past a body of finite size. The coefficient of viscosity &,& and thermal 
conductivity k are assumed to be proportional to the specific enthalpy, and the ratio x of 
the specific heats c,and c,is assumed to be constant and to satisfy the inequality 1 <x< 2. 
We denote the Prandtl number by NpI.= c&fk. We regard all quantities as dimensionless and 
use as the basic units pm, U, and &which denote respectively, the density of the oncoming 
flow, its velocity, and the ratio of the first coefficient of viscosity to the specific 
enthalpy. 

We introduce velocity perturbations, denoting by 1 + v,, Y, the components of the velocity 
vector along the x,r -axes of a plane or cylindrical system of coordinates, the origin of 
which coincides with the body. We denote the pressure, density and specific enthalpy by p,p, 

W respectively and we take, as the basic system, the system of Navier-Stokes equationswritten 
in Misses variables x,\r. The aim of this paper is to construct an asymptotic solution of the 
system as x+00, taking into account the energy and mass flux from the streamlined body. 

The principal terms of the asymptotic expansions neglecting such heat and mass transfer 
were obtained in /l/. The solution constructed there included two, essentially different 
regions of flow, the outer region and the laminar trace. In the first region the effect of 
viscosity and thermal conductivity can be neglected and the flow is determined basically by 
the wave resistance force F,. We can assume within the approximation used /2/ that the outer 
region is separated from the oncoming flow by a shock wave, which as s-_, CYI takes the form 

Tg;?i%F-/-..., 
2 

m=2+v, C=(r$#/@+v) 

The subsequent expansions of the flow parameters depend on the selfsimilar variable 

and are given by the formulas 

in which 

V~=Vx&~(~-%11(n)+ . . . . V~=V&~-l~~ll(q)+ .., 

P=P~~(m-l)pll(~)+..., p=p&1(?j)+... 
w x WG*(m--I)W~ (3 + . . . , r = Czmrll (q) 3; . . . 

(1.1) 
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Using the fact that such motion is analogous to the isoenergetic motionofa gas 
can obtain the functions with subscripts 11 from the exact solutions of the problem 
intense .explosion /4f written in Lagrange variables. 

In order to analyze the flow in the region of a viscous, heat-conducting trace, 
following variable was used in /l/z 

the 

By passing to the limit as q-0 in the expansions (1.1) written in inner variables 2, 5, 
we were able to determine the formof the principal terms of the inner expansions 

v,tEs~u=-Q+bf~v snl(l;)'r-.*, yt=uldE"-fd(X-l)lYXytll(F;) + . . . (1.21 
p - P~~+~~P.l (CJ + . . . t p - P&‘%r (&) + . . . 
UJ - wQ&+1)+*hJal (Q + . . . , r = Ciz~~(+l)/Y,, (C) + . I . 

and also obtain limiting expressions for the functions with subscripts 21 as 1;3m. The 
latter were used to construct a numerical solution of the boundary value problem describing 
the flow within the trace. 
form from those in /li. 

Note that expansions (1.2) can be written in a slightly different 
The present form clarifies the form of the dependence of the inner 

solution ion the wave resistance F,. 

2. Below we consider gas flows in which the streamlined body transmits to the stream 
certain finite amounts of energy and mass of the gas per unit time. To construct a new 
asymptotic solution we alter the form of the inner expansion 

v~=CUZRUm(~)+..., C,=ctlnst (2.1) 

and require that integration of this perturbation over 'f across the trace should give a result 
independent of the distance x from the plane of integration. This condition immediatelyyields 
the value 

?L= -tv+ 
2-t-v 

so that the principal term in the expansion for v=given in 12.1) is of higher order in x than 
that given in (1.2). The above changes in v,do not affect the principal terms of theexpansions 
of other flow parameters. They retain their previous form (1.2), since the equation for deter- 
mining the function vrat 

(2.2) 

is separated from the remaining equations of the first-approximation system and its solution 
is obtained after the functions ~~~,p,~,~~~,~~,r~ have been determined. 

The solution of (2.2) satisfying the symmetry condition has the form (the multiplicative 
integration constant is taken into the expansion (2.1)) 

\ 
\ 

~ 

Fig.1 shows the dependence of v,, on t for x = 1.4, NW = 0.75 
and for Y F 1 (the solid line) and VE 2 (the dashed line). We see 

a5 at once that the solution does not violate the condition for match- 
\ ing with the outer expansions (1.1) since it is exponentially small 
\ in x, in the domain of finite r\. 

'\ 
In order to describe the flows carrying additional gaseousmass, 

F we must stipulate the symmetry conditions for y =y,,, generally 

0 2 4 speaking different from zero , and oonsider the subregion of the trace 
in which z,y will play the part of characteristic variables. By 

Fig.1 passing to the limit as C-0 in the inner expansions written in 
terms of the Mieses variables, we can obtain the expansions in the 

new subregion in the form 

ux =i= C&%,~(Y) -I- . . . * u, = U&i”‘v*V,Sl (Y) 4 . . . (2.3) 

p==po.&m-‘)pJl(ly)“t-..., p=pbzd@pm(Y)+... 

w = w&(m-*)+bhh (Y) + . . . , r = CzbfvXr31 (Y) + . . 
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and also give the limiting conditions for the functions with subscripts 31 as y--+ 00. Subst- 

ituting the expansions 12.31 into the Navier-Stokes equations we obtain a first-approximation 
system, the solution of which satisfies the matching and symmetry conditions and has the form 

pal (w) - pa1 (Oh wol (VT) = %l(o)~ bl WI = 

L -g $p- (O)(Y - Yq’v, ual=r& 

Next we compute the total resistance force F,, the energy El and mass of gas Mt released 

by the body per unit time. As a result we obtain 

(2.4) 

The value of the rntegral of vxta at x = 1.4 and Np, = 0.75 is 2.183 for v = 1 and 
0.5340 for v =2. 

The solutions (1.X) , (l.Z), (2.11 and (2.3) depend on three constants, namely C,C,and I,. 
Equations (2.4) enable us to express these constants in texms of the integral characteristics 
of the processes taking place on the body. Solving (2.4) for C,C, and Y', we obtain 

We will now write the following expression for the wave resistance force 

F, = F, + Et + ‘J,M, 
In the absence of energy emission and blowing, the wave resistance at the body beccmes 

identical to the total resistance force. On the other hand, even in the case whenthetotal 
resistance force F, F 0, the wave resistance may differ from zero and be defined bytheheat 
flux E,and the mass flux &ii emerging from the streamlined body. Thus the expansions (1.1) 
and (2.11, the last five expansions of (1.21 and expansions (2.3) together yield the first 
approximation to the asymptotic solution, taking into account heat transfer and blowing. 
Higher-order approximations must however be considered to explain the effectofthesephenomena 
on the structure of the flow in the outer region and on the form of the expansions for VT> PI 
p, w, r. 

3. We will introduce into the inner expansions (1.2) correction terms, replacing the 
factors gsl %I by the expressions qrl(Q -I-&& (61, where g = u,, p, p, ZD, r. Substitution of 
new expansions into the Navier-Stokes equations yields an inhomogeneous linear system of 
ordinary differential equations for the functions Paa* the free terms of which contain the 
function v,. Introducing the auxilliary function aa, = vrnaraIv-' and taking into accountthe 
condition 

%a CO) = - -$ $L (0) Yo 

which follows from the solution (2.31, we can reduce the system to a single inhomogeneous 
linear second-order equation 

(3.1) 

To construct the solution of (3.1) we must formulate an additional. condition at C-coo, 
which can be done by analyzing the higher-order approximations in the outer region. However, 
the principal term of the expansion for a,, can be obtained without this condition when t;+ 00. 
The term is determined from the particular solution of the inhomogeneous eguation (3.1). As 
a result we have 
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Computing the coefficients in the expression for C, at x = 1.4, A$? = 0.75, we have C,= 
-&4%7~&-0,%?&Cc, for v = 1 and C, Z= --0.3037& SOr V = 2. The asymptotic representations 
of the functionsqrand a,, enable us to write the following inner expansion for o=r'v as 
6-t-: 

Q - CY;CY;-*(+Q~~ [CJ(++l)lX + C# -+ , . .], Cl 3 -+ p;:l” (3.3) 

Expansion (3.31 enables us to determine the form of the perturbations in the outer solu- 
tions. The problem consists of constructing such outer expansions, that the expansion for G 
in the region of matching contains a term identical with the second term of the limiting 
expression (3.3). 

Let us speaify the line separating the uniform oncoming flow from the outer region, using 
the expansion 

r.==Cz=(l+ c$zm'+...) (3.4? 

where C,and ml<0 are constants to be defined. 
From /2/ it follows #at for ml> -2v/(2 j-v) we can assume that (3.41 describes a shock 

wave and we can require that the Rankine-Hugoniot conditions hold not only for the principal 
terms of the expansions of the gas-dynamic functions, but also for their perturbations propor- 
tional to XV The outer expansions of the flow parameters corresponding to (3.4) have the 
form 

Substituting these expansions into the Navier-Stokes equations we obtain the following 
second-approximation system: 

(3.6) 

Pllmr -I- PlrwllI=pm 

System (3.6) is of second order (the first two equations can yield another finite rela- 
tion) , and therefore two Cauchy conditions 

wls (1) = (2 + v) ml -I- 2 - v$$ql), ha Q) - 3 - v $y- (1) 13.7) 

are sufficient to construct its solution. The terms are obtained from the Rankine-Hugoniot 
relations written for the shock wave (3.4). 

Analysis of the asymptotic behaviour as q-+0 of the first approximation /4/ and the 

solutions of system (3.61, enables us to write the limiting form of the outer expansion for 

o=rv in terms of the variables 2, c 

(3.8 

where the constant e,,(v,%,ml) can be found by numerical integration of system (3.6) with 
initial conditions (3.71, and 

2v(2-i-W+- *Ml+ ')P;:'* 
c* = W-i- 1)W+v)Y+2v@--i)l 

The principal terms of the expansions (3.3) and (3.8) are identical /l/, and the matching 
of subsequent terms requires that one of the correction terms in (3.8) must be identical with 

the second terms of the inner expansion (3.3). Only the third terms of (3.8) satisfies this 

requirement, since in this case the powers in 5 match automatically and the GhOiCe 



Fig.2 

2v 
‘ml= -- 

2+v 
+ 2(x+=-l) 
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(3.9) 

ensures the equality of powers of x. The condition for the coeffic- 

ients in the expansions (3.3) and (3.8) to be equal, determines the 
constant 

c, = C,lc, 

The last relation implies that the correction terms for the 
expansions (1.1) depending on the energy &and mass Mtdischarged 
by the body in plane-parallel flow, are of the same order a? as 
r+ ~0. In axisyrtnaetric flow the analogous corrections caused by Et 
are , as before, of order a?'~ as Z-+00, but are such greater than 

the corrections caused by Mt since the coefficient preceding Yy, in expression '(3.2) for C, 
vanishes when v = 2. 

Fig.2 shows graphs of solutions of system (3.6) with m,given by (3-g), satisfying the 
initial conditions (3.7) for x = 1.4. The solid line corresponds to plane flow (v = 1) and 
the dashed line to axisymmetric flow (v -2). The values of the constant c0 are 31'843 and 
2.171 for v = 1 and v = 2 respectively. 

4. Let US mw inspect the perturbations of the inner solution (1.2). The description of 
these perturbations cannot be reducedtothe previously introduced correction terms of order 
f. Indeed, comparison of the limit expansions (3.3) and (3.8) makes it essential to introduce 

into theinner expansions, correction terms of the order of a? where 

mg= 1- 
[ 

2+v 
1L 

2v V-X -- 
4(x+v-1) 2+v + P(x+v-1) 1 

Thus we shall seek a solution in the region of the trace, in the form 
(4.1) 

w = W~x*(m-l)+dlx [W,l (6) + cgmw*, (C) + . 1.1 
r = C~m+~--l)lv* [rsI (Q + C@%:, Q + . . .] 

The auxilliary terms of order x"introduced earlier, which are of lower order than those 
introduced later, are omitted from these expansions. The corrections in the expansions for u, 
are of no interest, since they are computed only after determining the perturbations in the 
other parameters of the flow. The correction function in the expansion for the pressure 

pt8(<)= 0, since the pressure p is constant in the approximation used, across the trace, and 
the condition for matching with the outer region demands that pt,+O. 

The functions of the second approximation satisfy the linear system of equations. 

I 
2 x--i -- 

2+v 2(x+y_i) +mt]r,,+nC+= * (2+W+ 1) %a 
(4.21 

X-t1 
WZI = ,_~PSI $- (m&3 

K d - - 
i 1 “NP, d5 

vFB1)*] +-.$-[2(~-i)r,g,,*]]- 

5 
da 

--($+-+)w*z 
d6 

= 0, fhwrz + pm%1 = 0 

the boundary conditions for which are represented by the symmetry conditions for 6 = 0 and 
the asymptotic matching conditions as 6-+ co. 

As we know, the symmetry conditions require that there should be no mass, momentum and 
heat sources on the axis of the trace. In the inner variables these conditions take the fol- 
lowing form at 6=0: 

r=v/!++l+O (4.3) 

Substituting expansions (4.1) into these formulas, we obtain the condition which must be 
satisfied at the point c=o by the functions of the first and second approximation. 

In the case of plane symmetry V= 1 we obtain, for the second-approximation functions, 

r,,(O)= "?*a (O)=d%(O)= z$(O)=O (4.4) 



522 

In the case of axisymmetric flow the finiteness of the derivatives &iag and adag re- 
prt3SSntS the SuffiCient COXIditiQn fQX ti0 h&St tWQ COnditiOnS Of (4.3) to hold. Therefore, 
when v= 2 the last twc conditions of (4.4) can be replaced by the condition that the deriva- 
tives d@d& and &u&t are finite when c-0. The same arguments hold for the first approx- 
imation functions. 

Using the symmetry conditions obtain& we reduce system (4.2) to the linear second-order 
differential equation for o,=vr,r~+, 

(4.5) 

the solution of which must.satisfy the conditions 

%s (0) = 0; %l(Q = c*tN -t- . . ., 6 -.a 00 (4.61 

The functions v~,~,%,~s obtained from the solution of problem (4.5), (4.6) by differentia- 
tion and using algebraic relations , autozaatically satisfy all the conaitions when 6-0 and 
t-m* 

We shall now describe a method of constructing the solution of f4.51, (4-S>. Fxum tie 
second equation of system (4.2) it follows that the derivative da,JdE is finite at the point 
f-0. Analyzing Eq.f4.5) as I;--00 we find that the following asymptotfc representation holds 
for its solution: 

a,(b)~a5*(1+atrPf~~P5+ ) .,. , a ni (v - 1) (x - 1) _ 2 (4.7) x 

where a is an arbitrary constant (the seoond,linearly independent solution is exponentially 
small)‘, and the constants ~,(tt, . . . can be written explicitly in terms of v,x,NPr We first 
construct tha auxilliaxy solution am* of (4.5) satisfying, at the poFnt G-0, the Cauchy 
relations u~*=O,du~ld~-I. Although various reasons prevent nuntesical integration of this 
problem up to large values of & nevertheless the use of several terms of the expansion (4.71 
yields the constant (I* corraspQnding to oJo with sufficient accuracy. The function ao(a = 
~~~*f!Jfa+ yields the required solution of the linear equaticn f4.5) satisfying conditions (4.6). 

Fig.3 shows gxaphs of the solutions of system (4.2) for x = 1.4 
and IV&= 0.75 fthe solid and dashed lines correspond, respectively, 
to plane and axisymmetric flow). ff 

In conclusion we note that when v = I a change of variables 
can be used to reduce Eqs.(4.2) to a degenerate hypergeometric egua- 
tion /5/ for the function r$,. In this case the second-approxima- 
tion functions are given by the followfng anaSytic expressions: 

Fig.3 

where M(a, b,z) is the Kummer function. The functions v,, and pSr can now be found with 
help of the algebraic relations. 
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