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ON THE INFLUENCE OF HEAT TRANSFER AND BLOWING ON THE STRUCTURE OF
LAMINAR HYPERSONIC FLOW BEHIND A BODY™

$.V. MANUILOVICH and E.D. TERENT'EV

The asymptotic solution of the Navier-Stokes equations in the problem of
hypersonic flow at large distances behind a body of finite size is studied.
The principal term of the expansion for the perturbation of the longitud-
inal velocity component in the region of the trace, decaying exponentially
in the direction of the outer boundary of the trace, is derived. The
stream function is assumed constant along the axis of the trace and,
generally speaking, non-zero. The solution constructed, enables not only
the effect of the resistance, but also of the heat and mass flux from the
streamlined body to be taken into account. The second terms of the
asymptotic expansions of the flow parameters are cbtained for the whole
region of perturbed motion.

1. consider a plane parallel (v =1) or axisymmetric (v == 2) hypersonic (pe = 0) flow of
an ideal gas past a body of finite size. The coefficient of viscosity A, Ay, and thermal
conductivity k are assumed to be proportional to the specific enthalpy, and the ratio % of
the specific heats ¢y, and ¢, is assumed to be constant and to satisfy the inequality {1 < %< 2.
We denote the Prandtl number by Npr = ¢MJ/k. We regard all gquantities as dimensionless and
use as the basic units P, Uw and M, which denote respectively, the density of the oncoming
flow, its velocity, and the ratio of the first coefficient of viscosity to the specific
enthalpy.

We introduce velocity perturbations, denoting by 1 +4 v,, ¥, the components of the velocity
vector along the X,r -axes of a plane or cylindrical system of coordinates, the origin of
which coincides with the body. We denote the pressure, density and specific enthalpy by p, p
w respectively and we take, as the basic system, the system of Navier-Stokes eguations written
in Mieses variables z, ¥. The aim of this paper is to construct an asymptotic solution of the
system as gz-»> 00, taking into account the energy and mass flux from the streamlined body.

The principal terms of the asymptotic expansions neglecting such heat and mass transfer
were obtained in /1/. The solution constructed there included two, essentially different
regions of flow, the outer region and the laminar trace. 1In the first region the effect of
viscosity and thermal conductivity can be neglected and the flow is determined basically by
the wave resistance force F, We can assume within the approximation used /2/ that the outer
region is separated from the oncoming flow by a shock wave, which as z— oo takes the form

2
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C = (roF /v

The subsequent expansions of the flow parameters depend on the selfsimilar wariable

v
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and are given by the formulas
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Using the fact that such motion is analogous to the iscenergetic motion of a gas /3/, we
can obtain the functions with subscripts 11 from the exact solutions of the problem of an
intense 'explosion /4/ written in Lagrange variables.

In order to analyze the flow in the region of a viscous, heat~conducting trace, the
following variable was used in /1/: ’

h VK
e m--8 —_
b=y Yo, S= i

By passing to the limit as 7 —0 in the expansions (1.l) written in inner variables z, {,
we were able to determine the formof the principal terms of the inner expansions

1NC1Da

Vg == Vg H80y o, (B} o L L, Uy = Dty gy (0 4 Ll (1.23

p=pex¥™=Upy {{) +..., p==pozOpy (L) + ... )
w == wogMm—D+8/%ypg, (1) - . ., ,  r==Cam—d—Divery, ) 4, ..

and also obtain limiting expressions for the functions with subscripts 21 as {~> oo. The
latter were used to construct a numerical solution of the boundary value problem describing
the flow within the trace. Note that expansions {1.2) can be written in a slightly different
form from those in /1/. The present form clarifies the form of the dependence of the inner
solution ion the wave resistance F,.

2. Below we consider gas flows in which the streamlined body transmits to the stream
certain finite amounts of energy and mass of the gas per unit time. To construct a new
asymptotic solution we alter the form of the inner expansion

TP o Y AN £ e pomat (2.1
V==L Vst i) T - $y === CO03 {d.1)
and require that integration of this perturbation over W across the trace should give a result
independent of the distance X from the plane of integration. This condition immediatelyyields
the value
2v VH
N TR o wpgmer— +-‘)1.,y.__n
249 2HEFV—1)

so that the principal term in the expansion for vygiven in {2.1) is of higher order in x than
that given in (1.2). The above changes in v,do not affect the principal terms of the expansions
of other flow parameters. They retain their previous form (1.2), since the equation for deter-~
mining the function vy,

K d | aw-n % n] v g
i {’ G| T v =0 (2.2)
8V Py

A= grma—yy > Pu=const

is separated from the remaining equations of the first-approximation system and its solution
is obtained after the functions Upg, Py, Pa1) W, 'n have been determined.

The solution of (2.2) satisfying the symmetry condition has the form (the multiplicative
integration constant is taken into the expansion (2.1}))

18 N 1_ae (I} ==oxp

\_ Fig.l shows the dependence of Uxge on § for x = 1.4, Np = 0.75
\ and for v =1 (the solid line) and ¥ ==2 (the dashed line). We see

g5y at once that the solution does not violate the condition for match-
\ ing with the outer expansions (l1.l) since it is exponentially small

\ in x, in the domain of finite 1.
\ In order to describe the flows carxying additional gaseous mass,

\\~ T we must stipulate the symmetry conditions for ¥ = ¥, generally
[/ 2 4 speaking different from zero, and oonsider the subregion of the trace
in which 2z, ¥ will play the part of characteristic variables. By
Fig.l passing to the limit as {~+0 in the inner expansions written in
) terms of the Mieses variables, we can obtain the expansions in the

new subregion in the form
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and also give the limiting conditions for the functions with subscripts 31 a ¥ — 0. Subst-
ituting the expansions (2.3) into the Navier-Stokes eguations we obtain a first-approximation
system, the solution of which satisfies the matching and symmetry conditions and has the form

vear (F) = vaas ), vion (%) =G vy (9), pu(¥)=pu

par (¥) = pn (0), w2 (¥)=wn1 (0), ros (V)=
['—JV %IL (OXY — ‘Po)]m , OSu=rn

Next we compute the total resistance force F,, the energy E, and mass of gas M; released
by the body per unit time. As a result we obtain

v VIOV, §
Fo=2 u Sv,,,(g)d;+z::v-xv, (2.4)

To v
0

V=1V, o
E, =f‘..—vcﬁ'-gu,,, @) L — mv-1F,, M, = — 201,
®
The value of the integral of vy, at x =14 and Np =0.75 is 2.183 for v =1 and
0.5340 for v =2,
The solutions {(1.1), (1.2), {2.1) and (2.3) depend on three constants, namely C, C,and ¥,
Equations (2.4) enable us to éxpress these constants in terms of the integral characteristics
of the processes taking place on the body. Solving (2.4) for C,(C, and ¥, we obtain

Vo= — My, C=[ro(Faet Ee 5 M)

onVv--1

Cu=(E¢ ——;—M:){!’o (F:“}'Et +_%_M‘)]-[(!+v) x [ o

o
1 -1
— v @ ]
4]
We will now write the following expression for the wave resistance force

Foy = Fp + E; + )M,

In the absence of energy emission and blowing, the wave resistance at the body becomes
identical to the total resistance force. On the other hand, even in the case when the total
resistance force F, = 0, the wave resistance may differ from zeroc and be defined by the heat
flux E;and the mass flux M; emerging from the streamlined body. Thus the expansions (1.1)
and (2.1), the last five expansions of (1.2} and expansions (2.3) together yield the first
approximation to the asymptotic solution, taking into account heat transfer and blowing.
Higher-order approximations must however be considered to explain the effect of these phenomena
on the structure of the flow in the outer region and on the form of the expansions for w,, p,
p, w, r,

3. We will introduce into the inner expansions (1.2) correction terms, replacing the
factors gy {§) by the expressions gy (§) + 2°¢, (), where g¢=wu, p, p, w, r. Substitution of
new expansions into the Navier-Stokes equations yields an inhcmogeneous linear system of
ordinary differential equations for the functions ¢ the free terms of which contain the
function vy, Introducing the auxilliary function 0y = vreyy¥™! and taking into account the
condition

o (0) = — 3 T2 () ¥

which follows from the solution (2.3), we can reduce the system to a single inhomogeneous
linear second-order eguation

X ve-1 O%Ggy dio, dGya [
W O o = on T | e — e (3.1)

— s [0 o (pem 58 4 o 2]

C
Cw::eﬁ*%‘;——‘l’o—v{rz—-%’—(()) +—:— §Ux“ ® dgg. € dE
8

To construct the solution of (3.1) we must formulate an additional condition at { —» 00,
which can be done by analyzing the higher-order approximations in the ocuter region. However,
the principal term of the expansion for g, can be obtained without this condition when {— co.
The term is determined from the particular solution of the inhomogeneous eguation (3.1). As
a result we have
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Computing the coefficients in the expression for €, at % = 1.4, Np, = 0.75, we have (,=
—0.4947¥,/C~0,9343Cy for v =1 and C, = —0.3037C, for v = 2. The asymptotic representations
of the functions gy and 0y enable us to write the following inner expansion for ¢ ==rv as

o0
en (K - ___% ~1/%
¢ == CVzvm—dn 1)/"[012;(“ 1)/"+sz"+..,], cl_mpu (3.3)

Expansion (3.3) enables us to determine the form of the perturbations in the outer solu-
tions. The problem consists of constructing such outer expansions, that the expansion for g¢
in the region of matching contains a term identical with the second term of thé limiting
expression (3.3).

Let us speeify the line separating the uniform oncoming flow from the outer region, using

the expansion
re==Cxm(1 4 Caam 4, ..) (3.4)

where C,and m; <0 are constants to be defined.

From /2/ it follows that for m; > ~-2v/(2 + v) we can assume that (3.4) describes a shock
wave and we can require that the Rankine~Hugoniot conditions hold not only for the principal
terms of the expansions of the gas-dynamic functions, but also for their perturbations propor-
tional to ™. The outer expansions of the flow parameters corresponding to (3.4) have the
form

Uy == UMMy () + Ca™0na (M) + . . ] (3.5
vy == Vg™ o, () + Cot™Wra () + . . ]

p=pex®™{py; (N} + Cz™pra () + . . .]

p=polpn () + Cex™prs(m) +...]

w = wez¥™=1 [wy; () 4 Coz™wna () + . . .]

r== Cx"‘{ru (ﬂ)+ C.im‘f'n(ﬂ) -+ .]

Substituting these expansions into the Navier-Stokes equations we obtain the following
second-approximation system:

2 2v dl'n — 4
(=~ + ) rin — g3 0 =y (3.6)
d -
Wy == ":':*f_—:' Pu-gr (vraarii ) + %:f—
dvfl! dpni dpu =0

(—2";;'1 mx—-ﬂif)vrn—fi“'m—-!-r}'x—l-?ﬂ*‘ -+ ("—-ﬁrn—;{-

2 N - - I (S+vImyzv
BB @ V)m 1)
1
Putis -+ Pt =P1s, Vas =y (2vnasn + Hwne)
System (3.6) is of second order (the first two equations can yield another finite rela-
tion), and therefore two Cauchy conditions

di |
w(1)=Q2+v)m+2—v “:;u @), ra{)=1 _v—d-'-q‘-‘-(i) 3.7

are sufficient to construct its solution. The terms are obtained from the Rankine—Hugoniot

relations written for the shock wave (3.4).

Analysis of the asymptotic behaviour as 7 -0 of the first approximation /4/ and the
solutions of system (3.6), enables us to write the limiting form of the outer expansion for
¢ = r¥ in terms of the variables &z, {

G == O vm=dlx—1)x [ L(x—11% 1. Cyoazmenfvmmafvmet- =1 | Cocozmride—in 4 ] (3.8)

where the constant ¢4 (v, %, m;)}) can be found by numerical integration of system (3.6) with
initial conditions (3.7), and
v @ Ve — )ma + 1) g™
@ = TWEDUZF 9 wm + 29 (e — 1]

The principal terms of the expsnsions (3.3) and (3.8) are identical /1/, and the matching
of subsequent terms requires that one of the correction terms in (3.8) must be identical with
the second terms of the inner expansion (3.3). Only the third terms of (3.8) satisfies this
requirement, since in this case the powers in { match automatically and the choice
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— 3.9
4 1 'me=—a et Sy —=) (3.9
\\\
\
\\ \ ensures the equality of powers of x. The condition for the coeffic-
2 3 T ients in the expansions (3.3) and (3.8) to be equal, determines the
N constant
O S | C, = Cyle,
i /V ’7’” The last relation implies that the correction terms for the
il o ""  expansions (1.l) depending on the energy E;and mass M, discharged
by the body in plane-parallel flow, are of the same order z™ as
Fig.2 z > 0. In axisymmetric flow the analogous corrections caused by E,

are , as before, of order z™ as z—oo, but are such greater than
the corrections caused by M, since the coefficient preceding ¥, in expression (3.2) for C,
vanishes when v =2,

Fig.2 shows graphs of solutions of system (3.6) with m;given by (3.9), satisfying the
initial conditions (3.7) for % = 1.4. The solid line corresponds to plane flow (v = 1) and
the dashed line to axisymmetric flow (v = 2). The values of the constant ¢, are 3.843 and
2,171 for v=1 and v =2 respectively.

4, Let us now inspect the perturbations of the inner solution (1.2). The description of
these perturbations cannot be reduced to the previously introduced correction terms of order
z". Indeed, comparison of the limit expansions (3.3) and (3.8) makes it essential to introduce

into the inner expansions, correction terms of the order of 2™ where

_ 24w } v w
m’_[1 - 4(u+v—1)“" P 2(u+v—1)]
Thus we shall seek a solution in the region of the trace, in the form

V= CuZ™osa () + ... (4.1}
U = Upozm 100D [y, g1 (§) + Cox™vmas (§) + . . -]
P =pex®™pa; + .

P - 2 3 PO ¢ AW tan__ ¥\ __ 1
p=pox*[pn ) + Coz™puz {1 4 .. .]
w = woerdm—V+8/% [0y, () + Ca@‘"”wn ®+...]

r=Czm=3=0[ry; () + Ca™Taa (1) + .. ]

The auxilliary terms of order z"introduced earlier, which are of lower order than those
introduced later, are omitted from these expansions. The corrections in the expansions for v,
are of no interest, since they are computed only after determining the perturbations in the
other parameters of the flow. The correction function in the expansion for the pressure
Dga (§) == 0, since the pressure p is constant in the approximation used, across the trace, and
the condition for matching with the outer region demands that p,, - 0.

The functions of the second approximation satisfy the linear system of equations.

s

1 2 %*—1 3 dre,
|55 — Togs=n T ™t = e v (4.2)
Wy = :i: PZL':—;'(VT!Zrzl_I)

K [ d =1 dwe ] ¢ _d__ DY dwy 1) _
nNp; { T | T ] |_2 (= Yramm = ]}
g d:;ga (% } Wea =0, Partse -+ prawwa =0

t
=2
D
3
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b
>

v conditions for which are re

e bounadary 10 11Cn ax

the asymptotic matching conditions as § — oco.
As we know, the symmetry conditions requ:.r that

heat sources on +he
fnieat sources on th

lowing form at [=0:

8 A€ dho dmeen o 4 o
K135 OL Tie Trace. In the inner v

Substituting expansions (4.1) into these formulas, we obtain the condition which must be

satisfied at the point {=0 by the functions of the first and second approximation.
In the case of plane symmetry ~v=1 we obtain, for the second-approximation functions,

A_ o, ) o
e (0) = vy (0) = 2R (0) = Z2(0) = {4.4)
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In the case of axisymmetric flow the finiteness of the derivatives dvgel and dw/9{ re-
presents the sufficient condition for the last two conditions of (4.3) to hold. Therefore,
when v=2 the last two conditions of (4.4) can be replaced by the condition that the deriva-
tives du/dl and duwyn/d] are finite when {=0. The same arguments hold for the first approx-
imation functions,

Using the symmetry conditions obtained we reduce system (4.2) to the linear second-order
differential equation f£or og = vur ',

£ a3, dis 4
Wy [ GO e | = T e (4-5)
2 v i

N:—: e —— i . T et
A(X Aoy —1] %
the solution of which must. satisfy the conditions
02 (0) =0 S =at"+ ... . =0 (4.6}

The functions vy, Pa Wan ' Obtained from the solution of problem (4.5), (4.6) by differentia-
tg:ian and using algebraic relations, automatically satisfy all the conditions when L=0 and
—r OO,

We shall now describe a method of constructing the scluticn of (4.5), (4.6). From the
second equation of system (4.2) it follows that the derivative doy/d{ is finite at the point
{=0. Analyzing Bg.(4.5) as {—oo we find that the following asymptotic representation holds
for its solution:

0 (0) = o (1 + 0l + o™ +..), a=EZHEZD_, (4.7)

where a is an arbitrary constant (the second,linearly independent solution is exponentially
small), and the constants a;, @, ... can be written explicitly in terms of v, %, Nyp. We first
construct the auxilliary solution on* of (4.5) satisfying, at the point {=0, the Cauchy
relations ay® =0, dog*/dl=1. Although various reasons prevent numerical integration of this
problem up to large values of {, nevertheless the use of several terms of the expansion (4.7)
yields the constant a* corresponding to %, with sufficient accuracy. The function oy (d) =
o0 [fe* yields the required solution of the linear equation (4.5) satisfying conditions (4.6).

Fig.3 shows graphs of the solutions of system (4.2) for x = 1.4
and Np =075 (the solid and dashed lines correspond, respectively,
to plane and axisymmetric flow).

In conclusion we note that when v =1 a change of variables
can be used to reduce Egs.(4.2) to a degenerate hypergeometric equa-
tion /5/ for the function r,. In this case the second-approxima-
tion functions are given by the following analytic expressions:

vas (€) = exp (— £H/(12K))
— Np, \(x-+1/e% N
raa (0) == 00 ) (-—E—,”) T CM(-—@M"":" 3 )

1) py [ {— 4/{8x; Np, \lxtiiex (4a+z 1 Ny,
wyg §)=—¢2 t );’:t-n( 7 ('Tf%‘) x M R T “—‘Tﬁf—?>

where M (a, b, 7) is the Kummer function. The functions U, and p, can now be found with
help of the algebraic relations.
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